← Back

Chaotic Pendulum Simulation

Solutions approximated with the Runge-Kutta method

\[ \begin{align} \ddot{\theta_1} &= \frac{-g(2m_1 + m2)\sin(\theta_1) - m_2g\sin(\theta_1-2\theta_2) -2\sin(\theta_1-\theta_2)\cdot m_2(l_2\dot{\theta_{2}^2} + l_1 \dot{\theta_1^2}(\cos(\theta_1-\theta_2)))} {l_1(2m_1+m_2 - m_2\cos(2(\theta_1-\theta_2)))} \\ \ddot{\theta_2} &= \frac{2\sin(\theta_1-\theta_2)(l_1(m_1+m_2)\dot{\theta_1^2}) +g(m_1+m_2)\cos(\theta_1) + l_2m_2\dot{\theta_2^2}\cos(\theta_1-\theta_2)} {l_2(2m_1+m_2 - m_2\cos(2(\theta_1-\theta_2)))}\\ \end{align} \]
Where \(l_1, m_1, \theta_1\) are the length, mass, and angle from vertical of the top pendulum (respectively). \(l_2, m_2, \theta_2\) are the length, mass, and angle from vertical of the bottom pendulum (respectively). \(g = 9.81\) is the force of gravity.
10